Simulated Annealing Fuzzy Clustering in Cancer Diagnosis
نویسندگان
چکیده
Classification is an important research area in cancer diagnosis. Fuzzy C-means (FCM) is one of the most widely used fuzzy clustering algorithms in real world applications. However there are two major limitations that exist in this method. The first is that a predefined number of clusters must be given in advance. The second is that the FCM technique can get stuck in sub-optimal solutions. In order to overcome these two limitations, Bandyopadhyay proposed a Variable String Length Simulated Annealing (VFC-SA) algorithm. Nevertheless, when this algorithm was implemented, it was found that sub-optimal solutions were still obtained in certain circumstances. In this paper, we propose an alternative fuzzy clustering algorithm, Simulated Annealing Fuzzy Clustering (SAFC), that improves and extends the ideas present in VFC-SA. The data from seven oral cancer patients tissue samples, obtained through Fourier Transform Infrared Spectroscopy (FTIR), were clustered using FCM, VFC-SA and the proposed SAFC algorithm. Experimental results are provided and comparisons are made to illustrate that the SAFC algorithm is able to find better clusters than the other two methods. Povzetek: Opisana je nova variacija algoritma FMC za klasifikacijo s pomočjo mehkega grupiranja.
منابع مشابه
The Application of a Simulated Annealing Fuzzy Clustering Algorithm for Cancer Diagnosis
Fourier Transform Infrared Spectroscopy (FTIR) is becoming a powerful tool for use in the study of biomedical conditions, including cancer diagnosis. As part of an ongoing programme of research into the potential early diagnosis of cervical cancer, Hierarchical Cluster Analysis (HCA) and Fuzzy C-Means (FCM) have been applied to distinguish FTIR spectra obtained from cancerous and non-cancerous ...
متن کاملFuzzy Entropy Based Fuzzy c-Means Clustering with Deterministic and Simulated Annealing Methods
This article explains how to apply the deterministic annealing (DA) and simulated annealing (SA) methods to fuzzy entropy based fuzzy c-means clustering. By regularizing the fuzzy c-means method with fuzzy entropy, a membership function similar to the Fermi-Dirac distribution function, well known in statistical mechanics, is obtained, and, while optimizing its parameters by SA, the minimum of t...
متن کاملA simulated annealing algorithm for the clustering problem
In this paper we discuss the solution of the clustering problem usually solved by the K-means algorithm. The problem is known to have local minimum solutions.A simulated annealing algorithm for the clustering problem. The solution of the clustering problem usually solved by the K-means algorithm.In this paper, we explore the applicability of simulated annealing. Clustering problem is investigat...
متن کاملDeterministic and Simulated Annealing Approach to Fuzzy C-means Clustering
This paper explains the approximation of a membership function obtained by entropy regularization of the fuzzy c-means (FCM) method. By regularizing FCM with fuzzy entropy, a membership function similar to the Fermi-Dirac distribution function is obtained. We propose a new clustering method, in which the minimum of the Helmholtz free energy for FCM is searched by deterministic annealing (DA), w...
متن کاملAn Approach to Reducing Overfitting in FCM with Evolutionary Optimization
Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Informatica (Slovenia)
دوره 29 شماره
صفحات -
تاریخ انتشار 2005